If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-24b+16=0
a = 1; b = -24; c = +16;
Δ = b2-4ac
Δ = -242-4·1·16
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-16\sqrt{2}}{2*1}=\frac{24-16\sqrt{2}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+16\sqrt{2}}{2*1}=\frac{24+16\sqrt{2}}{2} $
| 5a+8-2a+2(a-3)=13 | | 3x^2+27x+56=0 | | -3x^2-27x-56=0 | | 4x+2x-6=20 | | 3(5z+2)+6=14/12 | | 50x-64=360 | | 7/3-2/5x=1 | | (y^2)-8y-4=0 | | 5x-40=2x-20 | | (x+2)^2=3 | | 34-n=7 | | 28-n=17 | | 38-n=24 | | 2(r-4)=6(r-(-4) | | 33-n=4 | | n-30=7 | | n-27=8 | | 39-n=2 | | 37-n=21 | | n-29=10 | | 39-n=9 | | 36-n=7 | | X+.10x=16500 | | 3z-5.z=1 | | 2-2x=-4+x | | 3x+3+23=90 | | X^4-32x^2-48=0 | | Y=2^2+5x-5 | | 5x5=100 | | X+.06x=22790 | | (4x-1)=180 | | (4x-1)=88 |